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Abstract 

    In this paper, a recent combined isotope (tracer) and interdiffusion analysis is adapted to the 

case of binary liquid alloys. Three shear-cell experiments have been performed recently on 

liquid Al-Cu that are suitable for demonstration of the application of this analysis. In those 

experiments, a layer enriched in 65Cu was sandwiched between the interdiffusion couple ends. 

The analysis allows for a generalised treatment of the interdiffusion profile in order to obtain 

the total flux for one of the components. The self (tracer) diffusion coefficient of Cu is then 

obtainable as a function of composition in the diffusion zone. Results of the new analysis are 

in good agreement with an independently measured Cu self (tracer) diffusion coefficient at two 

compositions. 
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1. Introduction 

   Recently, a combined isotope (tracer) and interdiffusion theoretical approach was developed 

[1] for application to solid state interdiffusion couples with an addition of an enriched isotope 

layers in a sandwich-type configuration. The resulting expressions allow for obtaining the self 

(tracer) diffusion coefficients of the atomic components corresponding to the enriched isotopes. 

Importantly, these diffusion coefficients are obtained as functions of composition in the 

diffusion zone. 

    In liquids, there have been numerous experimental diffusion studies to obtain self-diffusion 

coefficients [2-19] as well as interdiffusion coefficients [12, 13, 18, 20, 21]. For the 

measurement of the various diffusion coefficients diverse experimental techniques have been 

developed [5, 22]. In addition, there has recently been an experimental interdiffusion study [13] 

of a Al85Ni15 – Al75Ni25 liquid couple where a thin layer of 62Ni isotopes was added between 

the couple ends with the resulting profile being processed using a Gaussian function analysis. 

This inevitably gave a constant self-diffusion coefficient for Ni. Furthermore, molecular 

dynamics simulations were also performed in the same study and excellent agreement was 

found for the self-diffusion coefficients. 



2. Experiment 

     The shear-cell (in a high temperature isothermal furnace) experimental set up (details are 

given in [23]) was designed to capture the simultaneous isotope diffusion and interdiffusion 

process in a liquid Al-Cu diffusion couple. The combined, sandwich type, sequence of phases 

in the initial state was: Al-Cu10at%  Al-65Cu12.5at%  Al-Cu15at%. The stable 65Cu isotope 

was used in the middle layer with an isotope purity of 98.49% (STB Isotope). Pure Al (Alfa 

Aesar 99.99\%) and Cu (Chempur 99.999\%) were used as starting materials for the non-

isotope parts of the set up. The naturally occurring isotopic composition of Cu (which is 

30.83% 65Cu and 69.17 63Cu) was used in the end parts of the diffusion sample. The prepared 

samples were contained in a large-diameter shear-cell. In total, there were 30 slices, with each 

slice of the cell being 3mm thick. The sandwich layer consisted of a single slice. In Figure 1 

the initial distributions of 65Cu, 63Cu and total Cu are presented. The x-axis in this Figure 

corresponds to the vertical axis in the experiment [23] with the left end of the sample being at 

the top. The setup therefore was such that stable density layering of the liquid column was 

achieved with more Cu-rich alloys being at the bottom of the cell [24]. During heating and 

melting the shear-cell was kept horizontal for homogenisation of the separated samples 

constituting the diffusion couple. Prior to the shear, at the target temperature of 973K, the cell 

was moved to an upright position. The diffusion was initiated by shearing the middle disc 

containing the enriched 65Cu layer. The diffusion process was stopped after a pre-selected 

annealing time (2 hours) by shearing every-other disc by 30 degrees. As a result, the liquid 

column was separated into individual liquid slices. Subsequently, the setup was cooled to room 

temperature and the individual slices solidified. The analysis of the resulting composition 

profiles was achieved by fully dissolving the individual slices and subsequently analysing them 

by means of atomic absorption spectroscopy (AAS, Varian AA240FS) and inductively-coupled 

plasma mass spectroscopy (ICP-MS, Varian 820-MS).  

      In total, three experiments were carried out simultaneously, of which Exp 1 was considered 

to have been the best one. Up to the present, the recently developed combined isotope and 

interdiffusion analysis [1] has not been applied to diffusion in a liquid alloy. Therefore, in this 

study, we will analyse these three experiments. 

     In Figs. 2 and 3 we present results of this analysis for all three experiments. In Figure 2, the 

total interdiffusion profile of cCu is presented as a function of diffusion distance. In Figure 3 

the fraction of 65Cu of the total Cu is presented as well. The distribution of this fraction is much 

smoother than the corresponding total Cu distribution in all three experiments. This is due to  



 

Figure 1.  Initial compositional profiles for isotopes 65Cu and 63Cu. The initial total Cu (blue 

dashes line) composition profile has a two-step shape.  

 

Figure 2. Interdiffusion composition profiles, cCu, measured by AAS in three simultaneously 

processed Al-Cu liquid sandwich-type diffusion couples. The shift in the data (blue triangles 

and black squares) is due to the graphite-felt volume compensation mechanism acting 

statistically differently on the capillaries. The shift is +/- one slice along the axial direction. 
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the lower statistical error in ICP-MS compared with AAS analysis. This smoother curve allows 

for successful application of the simultaneous isotope and interdiffusion analysis described in 

the next section for the case of liquid alloys. 

     In the same Figure 3 we have plotted the Gaussian functions fitted to the data points. Under 

the assumption that the diffusion of 65Cu is not affected by the interdiffusion process, a back-

to-back error functions solution (see, for example, [25]) can also be fitted to these ratios to 

obtain the corresponding constant self- (or tracer) diffusion coefficients. In the section on the 

error analysis below we show that the back-to-back error functions solution converges to the 

Gaussian distribution at long enough anneal times.  

 

 

Figure 3. Ratio of c65Cu/cCu (in %) for the same three diffusion couples as in Figure 2 measured 

by ICP-MS as function of diffusion distance. Symbols represent experimental data. Solid lines 

are the Gaussian solution fits. 

 

3. Theory 

    In [1] the analytical formalism of the simultaneous interdiffusion and self-diffusion 

experiment for solid state multicomponent alloys was derived. For completeness, we will 

briefly present this derivation here for the case of liquid alloys. 

       We consider a binary liquid alloy Al-Cu with Cu having two stable isotopes, 65Cu and 

63Cu. First, we assume that the mean-volume reference frame coincides with the laboratory 
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reference frame, which is correct in the case of a constant number of atoms per unit volume. 

Second, we assume that in the laboratory reference frame the atomic fluxes (= number of 

corresponding type of atoms crossing a unit area per unit time) can be presented by the Onsager 

expressions of non-equilibrium thermodynamics: 

 

     𝐽𝑖 = ∑ 𝐿𝑖𝑗𝑋𝑗
𝑛
𝑗=1       (1) 

 

where Lij are the Onsager transport (phenomenological) coefficients, the Xj are the forces acting 

on atoms of type j.  

    In the liquid interdiffusion experiment, we consider thermodynamic forces and additional 

drift producing forces Gi: 

 

𝑋𝑖 = −∇𝜇𝑖 + 𝐺𝑖                  (2) 

 

where ∇= 𝜕/𝜕𝑥, and x is the diffusion direction, 𝜇𝑖 is the chemical potential of the atomic 

species i. We will not speculate about the nature of the Gi forces, but will assume that Gi 

typically are much smaller than the thermodynamic forces. (Ideally, they should be completely 

suppressed for diffusion experiments in liquids.) Furthermore, we assume that Gi are functions 

of composition only and that they are the same for isotopes of the same atomic component.  

    For the thermodynamic parts of the forces, we have that [26]: 

 

  −∇𝜇𝐴𝑖 = −∇[𝜇0𝐴(𝑇, 𝑃) + 𝑘𝑇𝑙𝑛(𝑐𝐴𝑖𝛾𝐴)] = −𝑘𝑇[∇𝑐𝐴𝑖/𝑐𝐴𝑖 + ∇𝑙𝑛(𝛾𝐴)],    i = 1,2; (3) 

 

     −∇𝜇𝐴 = −∇[𝜇0𝐴(𝑇, 𝑃) + 𝑘𝑇𝑙𝑛(𝑐𝐴𝛾𝐴)] = −𝑘𝑇(∇𝑙𝑛(𝛾𝐴) + ∇𝑐𝐴/𝑐𝐴).  (4) 

 

where A is the activity coefficient of the A component and which depends on the total 

composition of A atoms, but not on the composition of isotopes A1 and A2 separately. In 

writing Eqs. 3 and 4 we have labelled natural Cu as A, the two isotopes of Cu as A1 and A2 

(with their respective atomic fraction compositions as cA1 + cA2 = cA , the natural occurrences 

of the 65Cu and 63Cu are 30.83% and 69.17% respectively). In what follows, Al will be labelled 

as B. 



      We will consider an initial geometric configuration in which a very thin layer of alloy with 

an intermediate composition but with only the isotope A1 being placed between the two parts 

of the diffusion couple (Figure 1). 

      The next part of the derivation follows [1]. Explicit Onsager expressions (Eqs. 1) for the 

atomic fluxes in the laboratory coordinate system are:  

 

𝐽𝐴1 = 𝐿𝐴1𝐴1𝑋𝐴1 + 𝐿𝐴1𝐴2𝑋𝐴2 + 𝐿𝐴1𝐵𝑋𝐵,  𝐽𝐴2 = 𝐿𝐴1𝐴2𝑋𝐴1 + 𝐿𝐴2𝐴2𝑋𝐴2 + 𝐿𝐴2𝐵𝑋𝐵  (5) 

 

  𝐽𝐵 = 𝐿𝐴1𝐵𝑋𝐴1 + 𝐿𝐴2𝐵𝑋𝐴2 + 𝐿𝐵𝐵𝑋𝐵                 (6) 

 

We will need the following obvious relations as well: 

 

𝐽𝐴 = 𝐽𝐴1 + 𝐽𝐴2          (7) 

  

𝑐𝐴𝑋𝐴 = 𝑐𝐴1𝑋𝐴1 + 𝑐𝐴2𝑋𝐴2                   (8) 

   

We will now use the following exact relations derived from linear response theory [27] for the 

Onsager coefficients: 

 

𝐿𝐴1𝐴1 =
𝑁𝑐𝐴1

𝑘𝑇
(𝐷𝐴

∗ + 𝑐𝐴1𝐹𝐴),       𝐿𝐴2𝐴2 =
𝑁𝑐𝐴2

𝑘𝑇
(𝐷𝐴

∗ + 𝑐𝐴2𝐹𝐴),      𝐿𝐴1𝐴2 = 𝐿𝐴2𝐴1 =
𝑁𝑐𝐴1𝑐𝐴2

𝑘𝑇
𝐹𝐴, 

𝐿𝐴𝐴 =
𝑁𝑐𝐴

𝑘𝑇
(𝐷𝐴

∗ + 𝑐𝐴𝐹𝐴),                    (9) 

     

𝐿𝐵𝐵 =
𝑁𝑐𝐵

𝑘𝑇
(𝐷𝐵

∗ + 𝑐𝐵𝐹𝐵),          𝐿𝐴1𝐵 =
𝑁𝑐𝐴1𝑐𝐵

𝑘𝑇
𝐹𝐴𝐵,    𝐿𝐴2𝐵 =

𝑁𝑐𝐴2𝑐𝐵

𝑘𝑇
𝐹𝐴𝐵,                            (10) 

 

where 𝐷𝐴
∗, 𝐷𝐵

∗  are the self or tracer diffusion coefficients of atoms A and B respectively, FA(B) 

is a function reflecting correlation between the movements of two different A(B) atoms and 

FAB is a function reflecting cross-correlation between the movements of A and B atoms. FA 

and FAB are the same for all A atom isotopes, N is the total number of atoms per unit volume 

and it is assumed to be constant in this study.  

     Applying Eqs. 7 - 10 to the right hand sides of Eqs. 5 and 6 we soon have that: 

𝐽𝐴1 =
𝑁

𝑘𝑇
𝐷𝐴

∗𝑐𝐴1(𝑋𝐴1 − 𝑋𝐴) +
𝑐𝐴1

𝑐𝐴
𝐽𝐴;      (11) 

 



and similarly for 𝐽𝐴2. 

      Using the assumption that the drift forces for all isotopes of A atoms are equal, GA1 = GA2 

= GA , and Eqs. 3 and 4 for the thermodynamic forces, we have for 𝐽𝐴1 : 

 

     𝐽𝐴1 = −𝑁𝐷𝐴
∗ (∇𝑐𝐴1 −

𝑐𝐴1

𝑐𝐴
∇𝑐𝐴) +

𝑐𝐴1

𝑐𝐴
𝐽𝐴;     (12) 

and similarly for 𝐽𝐴2. 

      Eqs. 12 can be used to extract the self-diffusion coefficient DA
* when the interdiffusion 

composition profiles for total A and for one of the isotopes are known. It is obvious that this is 

possible only in a specially designed interdiffusion experiment where [1] 

 

∇𝑐𝐴2 −
𝑐𝐴2

𝑐𝐴
∇𝑐𝐴 ≠ 0.         (13) 

 

The corresponding Diffusion Equations (Fick’s Second Law) for A1 and A are: 

 

𝜕𝑐𝐴1

𝜕𝑡
= −∇𝐽𝐴1/𝑁 = ∇ [𝐷𝐴

∗ (∇𝑐𝐴1 −
𝑐𝐴1

𝑐𝐴
∇𝑐𝐴) −

𝑐𝐴1

𝑐𝐴
𝐽𝐴/𝑁] ;        (14) 

 
𝜕𝑐𝐴

𝜕𝑡
= −∇𝐽𝐴/𝑁 = ∇(𝐷̃ ∇𝑐𝐴)               (15) 

 

where t is the time variable, ∇ is the gradient along the space variables, 𝐷̃ is the interdiffusion 

coefficient (sometime this coefficient is denoted by 𝐷𝐴𝐵) that can be expressed in terms of the 

phenomenological coefficients and thermodynamic factor  as: 

 

 𝐷̃ = 
𝑘𝑇

𝑁
(

𝑐𝐵

𝑐𝐴
𝐿𝐴𝐴 +

𝑐𝐴

𝑐𝐵
𝐿𝐵𝐵 − 2𝐿𝐴𝐵)              (16) 

 

    We can now apply this theory to the interdiffusion experiment described in the previous 

section. We assume that the width of the intermediate layer (3mm) is small enough compared 

to the interdiffusion length, 2√𝐷̃𝑡.  With this assumption, the diffusion spread of the 

intermediate (the isotopes) layer can be considered to follow the functional form 𝑔(𝜆)/√𝑡, 

where 𝜆 = 𝑥/√𝑡 is the Boltzmann variable. Then, the Cu self- diffusion coefficient can be 

estimated by the following solution derived in [1] (note that cA1 is defined as the excess of the 

isotopes A1 above the natural occurrence for this solution to be valid)  

 



𝐷𝐶𝑢
∗ = − (

(𝑥+𝑎)

2𝑡
+ 𝐷̃ 

𝑑𝑙𝑛𝑐𝐴

𝑑𝑥
) / (

𝑑ln (𝑐𝐴1/𝑐𝐴)

𝑑𝑥
)   (17) 

or, the more general form: 

𝐷𝐶𝑢
∗ = − (

(𝑥+𝑎)

2𝑡
−

𝐽𝐴/𝑁

𝑐𝐴
) / (

𝑑ln (𝑐𝐴1/𝑐𝐴)

𝑑𝑥
)        (18) 

 

The parameter a (appearing here as an integration constant) can be identified using the 

following method: first, the derivative function 
𝑑ln (𝑐𝐴1/𝑐𝐴)

𝑑𝑥
  should be calculated as a function 

of composition in the diffusion zone; this function will go through zero at some composition 

{𝑥′, 𝑐𝐴1
′ }. Next, the numerator function 

(𝑥+𝑎)

2𝑡
+ 𝐷̃  

𝑑𝑙𝑛𝑐𝐴

𝑑𝑥
  should be calculated at the same point 

{𝑥′, 𝑐𝐴1
′ }, then equating this function to zero and solving it w.r.t. the parameter a will finish the 

search. 

    Eq. 17 should be used if the drift forces 𝐺𝑖 are negligibly small and the interdiffusion 

coefficient 𝐷̃ can then be obtained from the analysis of the profile for the total A(B) atoms 

composition by making use of a standard analysis, for example, Sauer-Freise [28] or simply an 

error function solution when 𝐷̃ is assumed to be independent of composition. If, on the other 

hand, Eq. 18 is used, the flux 𝐽𝐴
0/𝑁, in general, can be calculated using the following expression 

[28]: 

𝐽𝐴/𝑁 =
𝑐𝐴

+−𝑐𝐴
−

2𝑡
× [(1 − 𝑦𝐴

∗) ∫ 𝑦𝐴𝑑𝑥
𝑥∗

−∞
+ 𝑦𝐴

∗ ∫ (1 − 𝑦𝐴)𝑑𝑥
∞

𝑥∗ ]     (19)  

 

where x* is the point of evaluation, yA = (𝑐𝐴 − 𝑐𝐴
− )/( 𝑐𝐴

+ − 𝑐𝐴
−) is the scaled mole fractions of 

atoms A and the superscripts “+” and “−” denote the right and left hand ends of the diffusion 

couple. 

      In our analysis below, we will use Eq. 17. 

 

4. Analysis of the experiment  

      In application of Eq. 17 to the experimental data (Figs. 2 and 3), as was already specified 

above, the A atoms are Cu, the A1 atoms consist of the excess of the isotope 65Cu above its 

natural occurrence level, the B atoms are Aℓ. The end compositions are: 𝑐𝐶𝑢
− = 0.10; 𝑐𝐶𝑢

+ =

0.15 . Traditional interdiffusion analysis always consists of two parts, the integration part of 

the interdiffusion profile and the derivative part of the same interdiffusion profile. Both parts 

are implemented numerically on the discrete set of experimentally obtained compositional 

points. The integration part is relatively insensitive to the experimental error, in contrast with 



the derivative part, which is very sensitive to the experimental error. To minimise the effect of 

this error, the interdiffusion profile is usually carefully smoothed out. In the case of the present 

analysis, it is clear that the interdiffusion profile (Figure 2) should be used for error function 

fitting with the assumption that the interdiffusion coefficient is constant. This will be used for 

the integration part of the analysis (to calculate 𝐷̃  
𝑑𝑙𝑛𝑐𝐴

𝑑𝑥
). The derivative part now has to be 

applied to a different type of profile. In fact, it involves the derivative of the ratio (𝑐65𝐶𝑢 −

𝑘𝑐𝐶𝑢)/𝑐𝐶𝑢, where k = 0.3083 (the natural occurrence of 65Cu). In Figure 3 the ratio 𝑐65𝐶𝑢/𝑐𝐶𝑢 

is presented for all three experiments and it can be used (minus k) in the right hand side in Eqs. 

17. It should be noted that, fortunately, this ratio is much smoother than the total composition 

of Cu (Figure 2). Furthermore, the Gaussian distribution (solid lines in Figure 3) works very 

well as a smoothing function. 

    We can safely assume that the forces 𝐺𝑖 are all negligibly small and then the interdiffusion 

profile has an error function shape (when the interdiffusion coefficient is independent of 

composition). The appropriate error function together with the corresponding interdiffusion 

coefficient 𝐷̃ should then be identified and used for the term 𝐷̃  
𝑑𝑙𝑛𝑐𝐴

𝑑𝑥
 in Eq. 17. We will apply 

our analysis to the experimental profiles and compare the results for the self-diffusion 

coefficients with available data measured by the quasi-elastic neutron scattering (QENS) 

technique [29].  

 

5. Results  

     In the first experiment, the best fit was achieved with the interdiffusion coefficient: 2.5x10-

9 m2/s. Similarly, for the second experiment and the third experiment we have 1.5x10-9m2/s; 

and 4.8x10-9m2/s correspondingly. These best fits (shown in Figure 2 with solid lines) were 

done using the error function solution [25]. Due to the uncertainty in concentration 

measurements, there is a large uncertainty of up to ±1.6 x10-9 m2/s. 

       In Figure 4 we show results of the application of Eq. 17 to the interdiffusion profiles and 

the ratios (𝑐65𝐶𝑢 − 𝑘𝑐𝐶𝑢)/𝑐𝐶𝑢, (Figs. 2 and 3).  For all three experiments the resulting self-

diffusion coefficients, shown by solid lines, slightly decrease with an increase in concentration.  



 

 

Figure 4. Results of combined isotopic and interdiffusion analysis where a constant 

interdiffusion coefficient and corresponding error function for the interdiffusion profile were 

assumed. The Cu self-diffusion coefficient was calculated for all three experiments as a 

function of composition. The triangles represent results of independent QENS measurements 

on AlCu12.5at% [29] and AlCu20at% [20]. 

 

The results of Experiment 1 give a very good agreement with the independently measured self-

diffusion coefficient of AlCu12.5at%. Experiment 2 underestimates the diffusion coefficient 

by about 10% and Experiment 3 overestimates the self-diffusion coefficient by about 20%.  

The overestimation of the self-diffusion coefficient goes along with an interdiffusion 

coefficient, which is about 25% larger than the accurate value. The increased value agrees well 

with in-situ X-ray radiography measurements that showed a similar increase in the apparent 

interdiffusion coefficient due to Marangoni flow [24]. Underestimation of the values can 

typically occur in the case of diffusion barriers. This might be the case in Experiment 2.  

     In addition, it should be noted that the self-diffusion coefficients (Figure 4) calculated as 

functions of composition have characteristic (slight) initial downward and final upward 

curvatures. This is usually accepted as the indication that the diffusion coefficient is becoming 

less reliable. This happens at the tails of the corresponding composition profiles where the 

intrinsic experimental error is the highest. These parts are usually not truncated and left for the 

reader to decide on the reliability range. In the case of Figure 4, it can be concluded that the Cu 

self-diffusion coefficient decreases almost linearly between 10 to 14 at% of Cu.  

 

6. Error Analysis 
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     The main error sources are: experimental measurements uncertainty and the main 

assumptions for the developed analysis. The other error sources: finite couple interdiffusion 

experiment (an infinite couple is assumed in the analysis), two-step initial composition 

distribution (one-step initial composition is assumed in the analysis), a volume change during 

the interdiffusion process.  

       Using Figure 2, the experimental error can be estimated by the amount of the final Cu 

composition fluctuations at the left and right ends of the couple. The above mentioned large 

uncertainties of fitting the error function solution (solid lines in Figure 2) into the interdiffusion 

profiles, surprisingly, do not affect much the resulting self-diffusion coefficients as functions 

of compositions. For example, in Figure 4, solid lines corresponds to results with the 

interdiffusion coefficients taken from the best fits, dashed lines corresponds to the 

interdiffusion coefficients taken at their upper limits.  

       Next, let us consider the main assumption in the developed analysis, that the sandwiched 

layer is thin enough for the application of the shifted Gaussian type function to the resulting 

spread of the layer. The correct solution for the spread of the thick layer is a two-error function 

(back-to-back error functions) solution. The condition for the two-error function solution being 

close enough to the Gaussian solution is: 

h2 /4Dt  << 1.0        (20) 

which is satisfied if 

               h /(Dt)1/2 < 2.0       (21) 

This is valid at the final stages of the experiment (h = 3mm, Dt = 36mm2), therefore the middle 

part of the Gaussian solution should be satisfactory, and the “tails” would have to show some 

deviations (hopefully small) from it. This is an important condition for applying the developed 

analysis because it is based on Gaussian solutions for the sandwiched part of the composition. 

    We have checked the effect of a changing molar volume using data from [30]. This effect is 

insignificant for the concentration variations involved. The molar volume maximum change is 

about 0.2%, which is impossible to detect and is well below the interdiffusion experiment error. 

   The finite couple effect has been checked numerically on a few model systems and for the 

parameters chosen for the experiment this effect is absolutely negligible. Similarly, for the two-

step initial composition distribution, the deviation from the analysis due to this effect is 

controlled by the above condition Eqs. 20, 21. 

 

7. Conclusions 



    In this paper, a combined isotope (tracer) and interdiffusion analysis has been adapted to the 

case of liquid alloys. It was then applied to analyse self (tracer) diffusion coefficients in a AlCu 

alloy at compositions between 10at% and 15at% of Cu. In total, three experiments have been 

performed and analysed. In those experiments, a layer enriched in 65Cu was sandwiched 

between the interdiffusion couple ends. The new analysis allows for taking into account the 

influence of the total flux of the components on the isotope diffusion process. The self (tracer) 

diffusion coefficient of Cu was obtained as a function of composition in the diffusion zone. 

The new analysis were found to be in good agreement with an independently measured Cu self 

(tracer) diffusion coefficient at two compositions. 
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